21 resultados para molecular modification

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O processo de modificação molecular denominado latenciação é revisto, apresentando formas avançadas no transporte de fármacos, utilizando macromoléculas como transportadores e sistemas de liberação sítio-específica como: CDS (Chemical Delivery System), ADEPT (Antibody-Directed Enzyme Prodrug Therapy), GDEPT/VDEPT (Gene-Directed Enzyme Prodrug Therapy/Vírus-Directed Enzyme Prodrug Therapy), ODDS (Osteotropic Drug Delivery System), PDEPT (Polymer-Directed Enzyme Prodrug Therapy), PELT (Polymer-Enzyme Liposome Therapy) e LEAPT (Lectin-Directed Enzyme-Activated Prodrug Therapy).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Short review about the main aspects of prodrug design, as its objectives, applicability and importance, showing the new trends in the research for selective latent forms, namely targeted drugs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chagas' disease is a serious health problem for Latin America. The situation is worsened by the lack of efficient chemotherapy. The two available commercial drugs, benznidazole and nifurtimox, are more effective in the acute phase of the disease. Nitrofurazone is active against Trypanosoma cruzi, however its high toxicity precludes its current use in parasitosis. Hydroxymethylnitrofurazone is a prodrug of nitrofurazone. It is more active against Trypanosoma cruzi than nitrofurazone, besides being less toxic. This work shows the voltammetric behavior of nitrofurazone and a comparison with those of metronidazole and chloramphenicol using cyclic, linear sweep and differential pulse voltammetries. For these drugs also the prediction of the diffusion coefficients using Wilke-Chang equation was performed. The reduction of nitrofurazone is pH-dependent and in acidic medium the hydroxylamine derivative, involving four electrons, is the principal product formed. In aqueous-alkaline medium and with a glassy carbon electrode pre-treatment the reduction of nitrofurazone occurs in two steps, the first involving one electron to form the nitro-radical anion and the second corresponding to the hydroxylamine derivative formation. Hydroxymethylnitrofurazone presented the same voltammetric behavior and electroactivity, indicating that the molecular modification performed in nitrofurazone did not change its capacity to be reduced. A brief discussion regarding the differences in biological activity between the two compounds is also presented. ©2005 Sociedade Brasileira de Química.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the structural designing of new drugs, it is possible predict the influence of specific chemical groups on pharmacological activity. Among these, the nitro group has potential antiparasitic activity, being present in many antimicrobial drugs, such as metronidazole, nitrofurazone, furazolidone, oxamniquine and chloramphenicol. Also, the introduction of the nitro group into a molecule can modify the physicochemical and electronic properties of the substance. Besides antimicrobial drugs, this group is also found in other drug classes, such as antiulcer, anti-inflamatory and anxiolytic. However, the use of the nitro group in drug design has encountered restrictions, due to the associated toxicity. This article is a review of the toxicity of nitrofuran compounds, as well the possible mechanisms involved and the strategy of latentiation by molecular modification to decrease their toxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Farmacêuticas - FCFAR

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of zinc acetate derived precursor currently used in the sol-gel synthesis of ZnO nanoparticles is described. The reaction products obtained before and after reflux of ethanolic zinc acetate solution have been studied by UV-Vis, photoluminescence, FTIR and EXAFS at the Zn K edge. EXAFS results evidence for both precursor solutions a change from the octahedral coordination sphere of oxygen atoms characteristic of the solid zinc acetate dihydrate compound into a four-fold environment. The EXAFS spectra of precursor solutions can be satisfactorily reproduced using the molecular structure reported for Zn4O(Ac)(6) (Ac = COOCH3). UV-Vis and FTIR measurements are also in agreement with the formation of this oligomeric precursor. The structural modification is more pronounced after reflux at 80degreesC, because the increase of the Zn4O(Ac)(6) amount and the formation of nearly 3.0 nm sized ZnO nanoparticle.